Background Recovery by Fixed-Rank Robust Principal Component Analysis

نویسندگان

  • Wee Kheng Leow
  • Yuan Cheng
  • Li Zhang
  • Terence Sim
  • Lewis Foo
چکیده

Background recovery is a very important theme in computer vision applications. Recent research shows that robust principal component analysis (RPCA) is a promising approach for solving problems such as noise removal, video background modeling, and removal of shadows and specularity. RPCA utilizes the fact that the background is common in multiple views of a scene, and attempts to decompose the data matrix constructed from input images into a low-rank matrix and a sparse matrix. This is possible if the sparse matrix is sufficiently sparse, which may not be true in computer vision applications. Moreover, algorithmic parameters need to be fine tuned to yield accurate results. This paper proposes a fixed-rank RPCA algorithm for solving background recovering problems whose low-rank matrices have known ranks. Comprehensive tests show that, by fixing the rank of the low-rank matrix to a known value, the fixed-rank algorithm produces more reliable and accurate results than existing low-rank RPCA algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Fixed-Rank Robust PCA for Video Background Recovery

Video background recovery is a very important task in computer vision applications. Recent research offers robust principal component analysis (RPCA) as a promising approach for solving video background recovery. RPCA works by decomposing a data matrix into a low-rank matrix and a sparse matrix. Our previous work shows that when the desired rank of the low-rank matrix is known, fixing the rank ...

متن کامل

Background Recovery by Fixed-rank Robust Principal Component Analysis

Background recovery is a very important theme in computer vision applications. Recent research shows that robust principal component analysis (RPCA) is a promising approach for solving problems such as noise removal, video background modeling, and removal of shadows and specularity. RPCA utilizes the fact that the background is common in multiple views of a scene, and attempts to decompose the ...

متن کامل

Fast Automatic Background Extraction via Robust PCA

Recent years have seen an explosion of interest in applications of sparse signal recovery and low rank matrix completion, due in part to the compelling use of the nuclear norm as a convex proxy for matrix rank. In some cases, minimizing the nuclear norm is equivalent to minimizing the rank of a matrix, and can lead to exact recovery of the underlying rank structure, see [Faz02, RFP10] for backg...

متن کامل

Robust Transfer Principal Component Analysis with Rank Constraints

Principal component analysis (PCA), a well-established technique for data analysis and processing, provides a convenient form of dimensionality reduction that is effective for cleaning small Gaussian noises presented in the data. However, the applicability of standard principal component analysis in real scenarios is limited by its sensitivity to large errors. In this paper, we tackle the chall...

متن کامل

PhaseLift is robust to a constant fraction of arbitrary errors

Consider the task of recovering an unknown n-vector from phaseless linear measurements. This nonconvex problem may be convexified into a semidefinite rank-one matrix recovery problem, known as PhaseLift. Under a linear number of Gaussian measurements, PhaseLift recovers the unknown vector exactly with high probability. Under noisy measurements, the solution to a variant of PhaseLift has error p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013